## Addition

Methods of teaching addition in KS1
Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Teaching guidance: When teaching addition refer to subtraction to ensure understanding of the inverse



## Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Teaching guidance: When teaching addition refer to subtraction to ensure understanding of the inverse


Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s columnwe exchange for 1 hundred.


A7p
Children to represent the counters in a place value chart, circling when they make an exchange.


Subtraction

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Teaching guidance: When teaching subtraction refer to addition to ensure understanding of the inverse.


| Ferham Primary School - Maths Calculation Policy |  | Kate Ratcliffe |
| :---: | :---: | :---: |
| S2c <br> Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$ | S2p <br> Children to represent what they see pictorially e.g. | S2a <br> Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line. |
| S3c <br> Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 . | S3p <br> Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate. <br> Comparison Bar Models <br> Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. | S3a <br> Find the difference between 8 and 5 . <br> $8-5$, the difference is ...? <br> Children to explore why 9-6=8-5=7-4 have the same difference. |
| S4c <br> Part, part whole model | S4p <br> Use a pictorial representation of objects to show the part, part whole model. | S4a <br> Move to using numbers within the part whole model. |



S5p
Children to present the ten frame pictorially and discuss what they did to make 10.


S5a
Children to show how they can make 10 by partitioning the subtrahend.

$14-4=10$
10-1 = 9


## Subtraction

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Teaching guidance: When teaching subtraction refer to addition to ensure understanding of the inverse.



## S8c

Column method using place value counters. 234-88


The exchange from H to T and T to O are shown with counters and then the 88 is subtracted.


146
back 7.


S7p
Represent the base 10 pictorially, remembering to show the exchange.


S8p
Represent the place value counters pictorially; remembering to show what has been exchanged.

The exchange is represented then the 88
is taken.

S7a
Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.


S8a
Formal column method. Children must understand what has happened when they have crossed out digits.


## Multiplication

Methods of teaching Multiplication in KS1
Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.
Teaching guidance: When teaching multiplication refer to division to ensure understanding of the inverse.

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| M1c <br> Repeated grouping/repeated addition $3 \times$ <br> 4 <br> $4+4+4$ <br> There are 3 equal groups, with 4 in each group. | M1p <br> Children to represent the practical resources in a picture and use a bar model. | M1a $\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$ <br> Link repeated addition to division. <br> (Do and undo method.) Demonstrating the inverse. $\begin{aligned} & 4+4+4=` 12 \\ & 12-4-4=4 \\ & 12 \div 3=4 \end{aligned}$ <br> See repeated subtraction in Division guide below. |
| M2c <br> Number lines to show repeated groups- $3 \times 4$ <br> Cuisenaire rods can be used too. | M2p <br> Represent this pictorially alongside a number line e.g.: | M2a <br> Abstract number line showing three jumps of four. $3 \times 4=12$ |
| M3C <br> Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ | M3p <br> Children to represent the arrays pictorially. | M3a <br> Children to be able to use an array to write a range of calculations e.g. $10=2 \times 5$ |

$5 \times 2=10$
$2+2+2+2+2=10$
$10=5+5$
Use arrays to teach inverse
of
division.
$10 \div 2=5$
$10 \div 5=2$

## Multiplication

Methods of teaching Multiplication in KS2
Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.
Teaching guidance: When teaching multiplication refer to division to ensure understanding of the inverse.

| Concrete | Pictorial | Abstract |  |  |
| :---: | :---: | :---: | :---: | :---: |
| M4c <br> Partition to multiply using Numicon, base 10 or Cuisenaire rods. $4 \times 15$ | M4p <br> Children to represent the concrete manipulatives pictorially. | M4a <br> Children to be encouraged to show the steps they have taken. $\left.\begin{array}{rl} 4 \times 15- \\ 105 \end{array}\right)$ |  |  |
| M5c <br> GRID METHOD <br> Show the link with arrays to first introduce <br> the grid method. | M5p <br> Children can represent the work they have done. They can draw the counters, using colours to show different columns to show their working. | M5a <br> Start with multiplying by one digit numbers and showing the clear addition alongside the grid.$\times$ 20 4 <br> 6 120 24 <br> $120+24=144$$\times$ 300 $\mathbf{4 0}$ $\mathbf{2}$ <br> 7 2100 280 14 <br> $2100+280+14=2394$ |  |  |


| 4 rows of 10 <br> 4 rows of 3 <br> Move on to using Base 10 to move towards a more compact method. |  | Moving forward, multiply by a 2 digit number showing the different rows within the grid method |
| :---: | :---: | :---: |
| M6c <br> Formal column method with place value counters (base 10 can also be used.) $3 \times 23$ | M6p <br> Children to represent the counters pictorially. | M6a <br> Children to record what it is they are doing to show understanding. $\begin{aligned} & 3 \times 233 \times 20=60 \\ & 3 \times 3=9 \\ & 20360+9=69 \end{aligned}$ |
| M7c <br> Formal column method with place value counters. $6 \times 23$ | M7p <br> Children to represent the counters/base 10, pictorially e.g. the image below. | M7a <br> Formal written method |

Key language: share, group, divide, divided by, half
Teaching guidance: When teaching division refer to multiplication to ensure understanding of the inverse.

| Concrete | Pictorial | Abstract |
| :---: | :---: | :---: |
| D1c <br> Sharing using a range of objects. $6 \div 2$ | D1p <br> Represent the sharing pictorially through bar modelling. | D1a$6 \div 2=3$3 3 <br> Children <br> should also be encouraged to use their 2 times tables facts. |
| D2c <br> Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ <br> 3 groups of 2 | D2p <br> Children to represent repeated subtraction pictorially. | D2a <br> Abstract number line to represent the equal groups that have been subtracted. |
| D3c <br> Division as grouping. <br> Divide quantities into equal groups. <br> Use cubes, counters, objects or place value <br> counters to aid understanding. | D3p <br> Number of jumps equals the number of | D3a $28 \div 7=4$ <br> Divide 28 into 7 groups. How many are in each group? |


|  | groups. <br> Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$ |  |
| :---: | :---: | :---: |
| D4c <br> Division with arrays. <br> Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{aligned} & 15 \div 3=5 \\ & 15 \div 5=3 \\ & 5 \times 3=15 \end{aligned}$ | D4p <br> Draw an array and use lines to split the array into group to make multiplication and division sentences. | D4a <br> Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 3=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ |
| Key language: share, group, divide, divided Teaching guidance: When teaching division | Division <br> half. <br> fer to multiplication to ensure unders | Methods of teaching Division in KS2 <br> ding of the inverse. |


| Ferham Primary School - Maths Calculation Policy |  | Kate Ratcliffe |
| :---: | :---: | :---: |
| D5c <br> 2d $\div 1$ d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. $13 \div 4$ <br> Use of lollipop sticks to form wholessquares are made because we are dividing by 4 . <br> There are 3 whole squares, with 1 left over. | D5p <br> Children to represent the lollipop sticks pictorially. <br> There are 3 whole squares, with 1 left $\dagger$ over. | D5a <br> 13 $\div 4$ - 3 remainder 1 <br> Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. <br> '3 groups of 4 , <br> with 1 left over' |
| D6c <br> Sharing using place value counters. $42 \div 3$$=14$10 s 1 s <br>   <br>   <br>   <br>  | D6p <br> Children to represent the place value counters pictorially. | D6a <br> Children to be able to make sense of the place value counters and write calculations to show the process. $\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$ |
| D7c <br> Short division using place value counters to group. $615 \div 5$ | D7p <br> Represent the place value counters pictorially. | D7a <br> Children to the calculation using the short division scaffold. |

1. Make 615 with place value counters. 2. How many groups of 5 hundred can you make with 6 hundred counters?
2. Exchange 1 hundred for 10 tens.
